Overview of hedge fund activism
Proxy attack players: activist, target, shareholders

Activists
Icahn Capital

Targeted firm
Dell Technologies

In 2013, Michael Dell offered $13.65 per share.
Icahn: privatization, not the best idea

Vanguard (3.9%), Charles Schwab (0.01%)

The goals of the confrontational proxy attacks:

- **Shareholder value** - board structure, financing structure, corporate strategy, etc.,
- **Social justice** - climate-friendly policies, women empowerment, etc.
Activists need support.

Activist strategy: focus on issues, which are important to the fund families that own larger shares in the target.

In Dell’s case, Icahn would focus on Vanguard (3.9%) instead of Charles Schwab (0.1%).
Catching the Conscience of Kings

How Activists Pander Mutual Funds

Manish Jha
March 12, 2021

Washington University in St. Louis
Activists use gender diversity phrases when State Street is a major shareholder

“We will vote against ... incumbent board members if a company does not have at least one woman on its board” - State Street, 2020

Gender diversity phrases: “female,” “gender,” “woman,” “women.”

(a) Number of times gender diversity phrases were mentioned in attacks where State Street owns > 1%.

(b) Fraction of attacks where gender diversity phrases were used.

Research Question: Do hedge fund activists tailor their campaigns to align with larger mutual fund families? And if so, how does it affect activism?
Activism literature has focused on pre- and post-event

1. **Characteristics** that influence activism:
 - **Targets**: Bradley, Brav, Goldstein, and Jiang (2010); Greenwood and Schor (2009)
 - **Activists**: Clifford (2008); Mietzner and Schweizer (2014)
 - **Shareholders base**: Brav, Jiang, Li, and Pinnington (2018); Gu and Zhang (2020)

2. **Implications** of activism for shareholder value and other corporate outcomes
 Aslan and Kumar (2016); Boyson, Gantchev, and Shivdasani (2017); Brav, Jiang, Ma, and Tian (2018)

Not much is known about activist’s engagement with stakeholders during an attack.
What does this paper add?

1. Measure fund family preferences; and attack’s alignment with those preferences

2. Evidence of campaign tailoring:
 - Activist’s communications are more aligned with fund families that hold larger shares.
 - Activists learn from their interactions with fund families.
 - Targeted firms’ also tailor their management proposals during attacks.

3. Increased alignment is associated with:
 - Attack filing views on SEC.gov by fund family
 - Fund family’s support for the activist
 - Success for the activist
What do mutual funds want?
Ways mutual funds reveal their preferences (McCahery, Sautner, and Starks 2016):

a. Behind the scenes engagement, executive interviews, websites
b. Proxy voting guidelines
c. Proxy voting - I use shareholder proposal text, 2-years prior to the attack.

Relate shareholder proposal text with Align - the fraction of funds (in a family) that did not follow management recommendation.

\[
Align \in [0, 1]
\]

If 9 out of 10 invested funds from State Street vote against management, Align = 0.9.
Align_{s,f} = \alpha_f + \beta_f \cdot x_s + \nu_{s,f}

Sample proposal: Gender diversity is important to us. To increase gender diversity, we nominate Dr. Rachel Green to the board.

\[x_s = \begin{bmatrix} \	ext{gen_div (2)} \	ext{rach_green (1)} \\ \ldots \\text{share_val (0)} \end{bmatrix} \]
Relating proposal text to fund family voting

\[\text{Align}_{s,f} = \alpha_f + \beta_f \cdot x_s + \nu_{s,f} \]

Sample proposal: Gender diversity is important to us. To increase gender diversity, we nominate Dr. Rachel Green to the board.

\[x_s = \begin{bmatrix} \text{gen_div (2)} \\ \text{rach_green (1)} \\ \ldots \\ \text{share_val (0)} \end{bmatrix} \]

\[0.9 = \begin{bmatrix} \text{gen_div_coeff} & \text{rach_green_coeff} & \ldots & \text{share_val_coeff} \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ \ldots \\ 0 \end{bmatrix} \]

- High dimensional input (shareholder proposal text features, ~10,000), with
- Limited observations (~500 shareholder proposals in two years).
Over-fitting if we employ Ordinary Least Squares. Predict perfectly in-sample, fail out-of-sample.

\[
0.9 = \begin{bmatrix} \text{gen}_\text{div} \text{coeff} & \text{rach}_\text{green} \text{coeff} & \ldots & \text{share}_\text{val} \text{coeff} \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ \vdots \\ 0 \end{bmatrix}
\]
Over-fitting if we employ Ordinary Least Squares. Predict perfectly in-sample, fail out-of-sample.

\[0.9 = \begin{bmatrix} \text{gen} & \text{div}_{\text{coeff}} & \text{rach} & \text{green}_{\text{coeff}} & \ldots & \text{share} & \text{val}_{\text{coeff}} \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \]

Support Vector Regression (SVR) penalizes non-zero coefficients:

- **Benefit**: predict well out-of-sample,
- **Cost**: cannot focus on subspaces, such as “Paris Agreement on Climate Change.”

Motivation

What do MFs want?

Evidence of campaign tailoring

Impact of campaign tailoring

Conclusion
SVR coefficients are interpretable and rooted in proxy voting choices

(a) Fraction of shareholder proposals containing “simple majority vote”, where the fund family voted against a management recommendation.

(b) SVR assigned coefficient for “simple majority vote.”
Once trained, the model could predict fund family support for the activist

Input

- Proxy attack text
- Proxy filings (DFAN, DEFC, PREC) by activists to solicit shareholder votes

Output

\[\text{Align} = \text{attack text’s alignment with fund family preferences} \in [0, 1] \]

- Trained Model

Motivation

What do MFs want?

Evidence of campaign tailoring

Impact of campaign tailoring

Conclusion
Once trained, the model could predict fund family support for the activist

Input

Proxy attack text

Proxy filings (DFAN, DEFC, PREC) by activists to solicit shareholder votes

2013 FrontFour Capital’s attack on Ferro Corporation:
“Shareholders request that our board take the steps necessary so that each voting requirement in our charter and bylaws that calls for a greater than simple majority vote be eliminated and replaced by a requirement for a majority of the votes cast for and against applicable proposals or a simple majority in compliance with applicable laws.”

Other Proposals: director nominations, sell solar and pharmaceutical businesses

Output

$\textbf{Align} = \text{attack text’s alignment with fund family preferences} \in [0, 1]$

Trained Model

... is more aligned with Fidelity.
Evidence of campaign tailoring
Who holds the cards varies

(a) Largest shareholders in target before the attack

(b) Variations in holdings, by fund family

The traditional big funds do not always have a significant influence. The activist has to decide whose preference to target based on holdings in the particular attack.

Motivation
What do MFs want?
Evidence of campaign tailoring
Impact of campaign tailoring
Conclusion
Summary Statistics

Unique observation = attack \cdot fund family

<table>
<thead>
<tr>
<th></th>
<th>All fund families</th>
<th>Align</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>66,836</td>
<td>66,836</td>
</tr>
<tr>
<td>Mean</td>
<td>0.09</td>
<td>0.48</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.63</td>
<td>0.40</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0.44</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>0</td>
<td>0.94</td>
</tr>
<tr>
<td>Maximum</td>
<td>18.58</td>
<td>1</td>
</tr>
</tbody>
</table>

Sample period: 2004–2019

Funds within a family often vote together.

Sample of invested fund families:

- Observation: 12,582,
- Mean: 0.48%

I focus on all fund data, survivorship bias in the smaller sample.
More ownership ~ higher attack text’s alignment

Attack text’s alignment is higher for families that own more shares in the target.
@ 0.01%: 0.46
@ 5%: 0.50

The trend seems to hold for individual fund families.

Bubble size represents # of observations at a particular holding.
Proxy text pander to larger shareholders

\[\text{Align}_{f,a} = \beta \text{Holding}_{f,a} + \delta a + \delta f + \epsilon_{f,a} \]

<table>
<thead>
<tr>
<th>Attack text’s alignment with fund family preferences</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of target mcap held by FF</td>
<td>0.0059***</td>
<td>0.0047**</td>
</tr>
<tr>
<td></td>
<td>[3.81]</td>
<td>[2.48]</td>
</tr>
<tr>
<td>Attack FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fund Family FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observation</td>
<td>66,432</td>
<td>66,432</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0</td>
<td>0.224</td>
</tr>
</tbody>
</table>

The proxy text solicits 0.7% more activist support for every 1% increase in fund family holding (Holding’s sd is 0.63%).

The text is geared towards preferences of major institutional holders in the target.

Activism helps push shareholders’ implicit agendas.
Channels via which campaigns are aligned with larger shareholders:

1. Activists **know fund families’ preferences; then raise those issues.**

 Activists learn with interactions; Target firms do use a similar strategy (discussed next)
Disentangling the channel

Channels via which campaigns are aligned with larger shareholders:

1. Activists **know fund families’ preferences; then raise those issues.**
 Activists learn with interactions; Target firms do use a similar strategy (discussed next)

2. **Activists already have an issue in mind;** and then choose a target firm to win.
 Actively influencing stakeholders is a crucial part of activism
 Activists do not seem to be focused on singular topics

3. Fund families know that activists will target a firm and raise specific issues. If the FFs prefer that issue, then they **increase holdings before the attack.**
 FFs are often passive, unlikely to engage in activism.
 To do: change in holding and voting behavior of FFs during an attack.
Activists learn from interactions

NumInt: number of times the fund family owned more than a percent of target shares in the activist initiated attacks.

Explains the increased:

- success of activists in recent years,
- openness of some institutions to activists’ demands.

\[
\text{Align}_{a,f} = \text{NumInt}_{a,f} + \delta_a + \delta_f + \epsilon_{a,f}
\]

<table>
<thead>
<tr>
<th>Attack text’s alignment with fund family preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Interaction</td>
</tr>
<tr>
<td>[2.15]</td>
</tr>
<tr>
<td>Attack FE</td>
</tr>
<tr>
<td>Fund family FE</td>
</tr>
<tr>
<td>Observation</td>
</tr>
<tr>
<td>(R^2)</td>
</tr>
</tbody>
</table>

Motivation What do MFs want? Evidence of campaign tailoring Impact of campaign tailoring Conclusion
Targets also focus on major investors during attacks

\[MPAlign_{a,f} = \beta Holding_{a,f} + \delta_a + \delta_f + \epsilon_{f,a} \]

The management proposal document include texts of all the management proposals with record date during the attack period.

The targets’ management use proposals to pander to larger shareholders, specifically, during the attack period.
Impact of campaign tailoring
Measuring fund family attention to an attack

SEC provides masked IP address that accesses filings on EDGAR. Cao, Du, Yang, and Zhang (2020); Iliev, Kalodimos, and Lowry (2020)

View = number of times IP addresses associated with a fund family accessed attack filing on SEC.gov.

More likely to access attack filings when activists speak to their concerns.

Motivation	What do MFs want?	Evidence of campaign tailoring	Impact of campaign tailoring	Conclusion

1. Funds pay more attention to attacks that speak to them

\[\text{View}_{a,f} = \beta \text{Align}_{a,f} + \delta_a + \delta_f + \epsilon_{a,f} \]

One sd (or 40 percentage points) increase in alignment is associated with 23% more views. (Average: 0.48)

Fund families, to which attack text is well aligned, are more likely to access proxy attack filings.

<table>
<thead>
<tr>
<th></th>
<th>Attack filings views (1)</th>
<th>Attack filings views (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack text's alignment</td>
<td>0.115***</td>
<td>0.112 ***</td>
</tr>
<tr>
<td></td>
<td>[4.69]</td>
<td>[4.57]</td>
</tr>
<tr>
<td>Holding</td>
<td></td>
<td>0.251 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5.25]</td>
</tr>
<tr>
<td>Attack FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fund Family FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observation</td>
<td>34,173</td>
<td>34,173</td>
</tr>
<tr>
<td>R^2</td>
<td>0.163</td>
<td>0.167</td>
</tr>
</tbody>
</table>

Motivation	What do MFs want?	Evidence of campaign tailoring	Impact of campaign tailoring	Conclusion

19/25
Measuring actual support for activist; distribution of outcomes

40% of confrontational attacks went to the voting stage. An attack usually contains **more than one proposal**.

SupAct = fraction of proposals in an attack, on which the fund family voted against the management
2. Text’s alignment predicts actual voting

\[
SupAct_{f,a} = \beta \text{Align}_{f,a} + \delta_a + \delta_f + \epsilon_{f,a}
\]

Actual activist support from the FF

<table>
<thead>
<tr>
<th>Attack’s alignment with the FF</th>
<th>0.0310***</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3.2]</td>
<td></td>
</tr>
</tbody>
</table>

| Attack FE | Yes |
| Fund Family FE | Yes |

| Observation | 1419 |
| \(R^2\) | 0.611 |

Three percentage points increase in support for the activists, for every sd (44%) increase in text’s alignment.

Fund families **vote favorably** in attacks where activists raise their concerns.

Gillan and Starks (2000); He, Kahraman, and Lowry (2018); Li, Patel, and Ramani (2019)
Are more tailored attacks, more successful

Is attack A more tailored than attack B?

\[\text{AgAlign}_a = \sum_f \overline{\text{Align}_{a,f}} \times \frac{\text{Holding}_{a,f}}{\sum_f \text{Holding}_{a,f}} \]

It measures aggregate mutual fund support, i.e., what fraction of the mutual fund’s vote will the activist gather, based on the attack text.
3. Attacks geared to larger investors succeed

Problem with AgAlign: volatile for smaller overall holding

\[Win_a = \gamma^{AgAlign}_a + \lambda^{OwnDum}_a + \beta^{AgAlign}_a \times OwnDum_a + \epsilon_a \]

OwnDum is one if overall MF holding is above the sample average (or 14.3%).

A 1-sd increase in AgAlign, or 28%, is associated with a 9.4 percentage points increase in the likelihood of an activist win (average: 63%).

<table>
<thead>
<tr>
<th>Indicator for activist win</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate alignment</td>
<td>0.0214</td>
<td>−0.0218</td>
</tr>
<tr>
<td></td>
<td>[0.90]</td>
<td>[-0.71]</td>
</tr>
<tr>
<td>Ownership dummy</td>
<td>0.0048</td>
<td>[0.10]</td>
</tr>
<tr>
<td>Aggregate alignment ×</td>
<td>0.111**</td>
<td></td>
</tr>
<tr>
<td>Ownership dummy</td>
<td>[2.25]</td>
<td></td>
</tr>
</tbody>
</table>

R² | 0.002 | 0.014

Link to Validation
Conclusion
Contribution

1. The **first to employ a machine learning model** to extract shareholder preferences. Bubb and Catan (2018); Bolton, Li, Ravina, and Rosenthal (2020). Current literature:
 a. Whether BlackRock supported management in a director election.
 b. A director election might contain other aspects: gender diversity, management inefficiency, etc.

2. **Shareholders’ preferences dictate** issues raised in activism. Appel, Gormley, and Keim (2019); Brav, Jiang, Li, and Pinnington (2018). This paper:
 a. Distinguishes between fund families of similar types
 b. Explores interactions and learning
 c. The issues activists raise affect shareholders’ **engagement and voting**.
Activists’ tailor their campaigns to align with larger shareholders in the target. Activists learn from their interactions with fund families. Targeted firms’ also tailor their management proposals during attacks.

The tactics help activists:

• increase fund family engagement
• gain their votes
• win
Thank You

Questions and Feedback: mjha@wustl.edu

Link to the paper: https://mjha91.github.io/research/proxytext
Miscellaneous
Examples: activists use phrases to align with major investors

In the figure:

- X-axis: key phrase, followed by “Year Activist, Target”
- The thick bar represents how important the phrase is to the mutual fund family.
- The thin black bars represents MFs holdings in the targeted firm.

Activists raise issues that are important to the larger shareholders.
The largest fund families tend to follow management recommendations

Table 1: In Column (1), the number in parentheses indicates the percent of proposals for which ISS recommended against the management. For others, the number inside parentheses indicates the percent of proposals with an against management vote during the year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Shareholder Proposals (1)</th>
<th>BlackRock (2)</th>
<th>Charles Schwab (3)</th>
<th>Fidelity (4)</th>
<th>State Street (5)</th>
<th>Vanguard (6)</th>
<th>Full Sample (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>360 (77)</td>
<td>344 (33)</td>
<td>301 (49)</td>
<td>327 (36)</td>
<td>317 (22)</td>
<td>327 (20)</td>
<td>24,980 (51)</td>
</tr>
<tr>
<td>2011</td>
<td>257 (78)</td>
<td>249 (45)</td>
<td>193 (63)</td>
<td>226 (46)</td>
<td>221 (36)</td>
<td>226 (34)</td>
<td>14,598 (59)</td>
</tr>
<tr>
<td>2012</td>
<td>358 (65)</td>
<td>328 (41)</td>
<td>242 (49)</td>
<td>329 (39)</td>
<td>304 (42)</td>
<td>292 (31)</td>
<td>21,577 (51)</td>
</tr>
<tr>
<td>2013</td>
<td>497 (65)</td>
<td>492 (27)</td>
<td>412 (37)</td>
<td>494 (23)</td>
<td>464 (35)</td>
<td>478 (18)</td>
<td>34,142 (44)</td>
</tr>
<tr>
<td>2014</td>
<td>534 (62)</td>
<td>530 (20)</td>
<td>418 (30)</td>
<td>521 (22)</td>
<td>516 (39)</td>
<td>521 (17)</td>
<td>38,383 (41)</td>
</tr>
<tr>
<td>2015</td>
<td>573 (71)</td>
<td>538 (31)</td>
<td>476 (17)</td>
<td>540 (22)</td>
<td>533 (38)</td>
<td>533 (15)</td>
<td>51,438 (44)</td>
</tr>
<tr>
<td>2016</td>
<td>413 (66)</td>
<td>391 (24)</td>
<td>360 (19)</td>
<td>389 (19)</td>
<td>380 (37)</td>
<td>393 (17)</td>
<td>34,507 (41)</td>
</tr>
<tr>
<td>2017</td>
<td>371 (60)</td>
<td>353 (27)</td>
<td>296 (25)</td>
<td>346 (28)</td>
<td>331 (30)</td>
<td>355 (20)</td>
<td>30,497 (40)</td>
</tr>
<tr>
<td>Total</td>
<td>6,176 (63)</td>
<td>5,613 (35)</td>
<td>5,143 (40)</td>
<td>5,269 (29)</td>
<td>4,359 (31)</td>
<td>5,205 (21)</td>
<td>417,848 (44)</td>
</tr>
</tbody>
</table>

The large mutual funds vote against management 30% of the time; compared to ISS, which recommends against management for 60% of the proposals.
Phrases that matter as of December 31, 2017

<table>
<thead>
<tr>
<th>BlackRock</th>
<th>Fidelity</th>
<th>Vanguard</th>
</tr>
</thead>
<tbody>
<tr>
<td>class common stock</td>
<td>class common stock</td>
<td>proxy access proposal</td>
</tr>
<tr>
<td>vote per share</td>
<td>vote per share</td>
<td>vote per share</td>
</tr>
<tr>
<td>incentive stock option</td>
<td>simple majority vote</td>
<td>class common stock</td>
</tr>
<tr>
<td>executive compensation program</td>
<td>corporate political contribution</td>
<td>director executive officer</td>
</tr>
<tr>
<td>recommend vote proposal</td>
<td>special meet proposal</td>
<td>stock option award</td>
</tr>
<tr>
<td>include proxy material</td>
<td>please vote protect</td>
<td>new independent director</td>
</tr>
<tr>
<td>statement satisfy bylaw</td>
<td>name executive officer</td>
<td>name executive officer</td>
</tr>
<tr>
<td>statement satisfy bylaw applicable</td>
<td>please vote protect</td>
<td>stock per share</td>
</tr>
<tr>
<td>disclosure statement satisfy</td>
<td>please vote protect</td>
<td>board director board</td>
</tr>
<tr>
<td>disclosure statement satisfy bylaw</td>
<td>vote protect shareholder value</td>
<td>enhance shareholder value</td>
</tr>
</tbody>
</table>

The list includes phrases that contain at least three words. The phrases are also mentioned in their proxy guidelines, media reports.
Validation and robustness
SVR weights follow proxy guidelines

Coefficients of “call special meet” follow Morgan Stanley’s voting guidelines.

\[\text{abs}(w)_{p,f,t+1} = \beta \text{count}_{p,f,t} + \delta_{f \times t} + \epsilon_{p,f,t} \]

| Absolute SVR weight \(\times 10,000 \) |
|-------------------------------|---|
| Count | 0.744*** |
| [7.77] | |
| Fund family \(\times \) year FE | Yes |
| Observation | 2,192,536 |
| \(R^2 \) | 0.064 |

Validation and robustness
Stitch an attack text from all the attack text in my sample.

The average aggregate alignment for the attack if it uses the attack text is 53%, compared to 28% for the dummy text.

Validation and robustness
Using a non-machine learning method

Classify shareholder proposals into **25 proposal types.**
Covers 90% of proposals

<table>
<thead>
<tr>
<th>Prop. type</th>
<th>General description of shareholder proposals in ISS database</th>
<th># of prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elect Directors (Opposition Slate); Elect a Shareholder-Nominee to the Board (Proxy Access Nominee); Elect Director (Cumulative Voting or More Nominees Than Board Seats); Elect a Shareholder-Nominee to the Board; Elect Director Nominated by Preferred Shareholders; Elect Directors (Bundled Dissident Slate)</td>
<td>1918</td>
</tr>
<tr>
<td>2</td>
<td>Require Independent Board Chairman</td>
<td>663</td>
</tr>
<tr>
<td>3</td>
<td>Declassify the Board of Directors</td>
<td>629</td>
</tr>
<tr>
<td>4</td>
<td>Political Contributions Disclosure</td>
<td>530</td>
</tr>
<tr>
<td>5</td>
<td>Require a Majority Vote for the Election of Directors</td>
<td>498</td>
</tr>
</tbody>
</table>

Validation and robustness

Fund family’s alignment with an attack proposal as the **fraction of relevant shareholder proposals** (2-years period) in which the fund family voted against management recommendation.
Robustness to a non-machine learning method

\[\text{Align}_{f,a} = \beta \text{Holding}_{f,a} + \delta_a + \delta_f + \epsilon_{f,a} \]

<table>
<thead>
<tr>
<th>Attack text’s alignment with fund family preferences (manual method)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of target mcap held by FF</td>
<td>0.0270***</td>
<td>0.0064*</td>
</tr>
<tr>
<td></td>
<td>[10.67]</td>
<td>[1.97]</td>
</tr>
<tr>
<td>Attack FE</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Fund Family FE</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>13,328</td>
<td>13,326</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.008</td>
<td>0.494</td>
</tr>
</tbody>
</table>

Attack’s alignment with the fund family preferences is the average alignment of attack proposals within an attack (~6 proposals per attack).

Activists selectively use proposal types on which the larger shareholders have voted against the management.
Changing SVR parameters: 95% CI

\[\hat{\text{Align}}_{a,f} = \beta \text{Holding}_{a,f} + \delta_a + \delta_f + \epsilon_{f,a} \]

The positive association between fund family holdings and attack text’s alignment is robust to changing SVR parameters.
Changing ownership dummy cutoff: 95% CI

\[Win_a = \gamma AgAlign_a + \lambda OwnDum_a + \beta AgAlign_a \times OwnDum_a + \epsilon_a \]

The positive association between attack’s aggregate alignment and activist’s success holds for changing ownership dummy cutoff.

Validation and robustness