Does finance benefit society? a language embedding approach

Manish Jha, Hongyi Liu, Asaf Manela

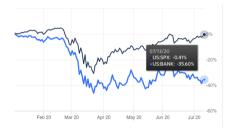
Washington University in St. Louis

July 2020

Intro

•000000

- ► Financial intermediaries bore most of the blame for 2008 crisis and subsequent recession
- ▶ Q: Will the financial sector be perceived more as a hero or villain after COVID-19?



Source: wsj.com

Why care?

"As finance academics, we should care deeply about the way the financial industry is perceived by society. Not so much because this affects our own reputation, but because there might be some truth in all these criticisms, truths we cannot see because we are too embedded in our own world. And even if we thought there were no truth, we should care about the effects that this reputation has in shaping regulation and government intervention in the financial industry. Last but not least, we should care because the positive role that finance can play in society depends on the public's perception of our industry."

Zingales (2015, AFA presidential address)

Public perceptions of finance matter

Mostly survey evidence

Intro

- ► Trust in bankers fell following the 2007–2008 financial crisis (Sapienza-Zingales 2012)
- ▶ Public perceptions often diverge from those of economists (Sapienza-Zingales 2013)
- Low trust can hinder insurance market efficiency (Gennaioli-Porta-Lopez-de-Silanes-Shleifer 2020)
- Short time dimension limits our understanding of public perception of finance

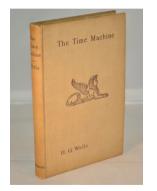
Questions

Intro

- How does finance sentiment change over time and differ across countries?
- How does it respond to rare disasters like the currently spreading pandemic?
- ▶ How do such changes relate to economic and financial outcomes?

Intro

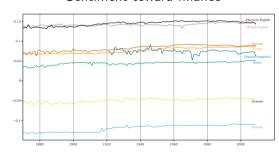
- Measure sentiment toward finance in an annual panel
- 8 large economies matched to languages from 1870–2009
- Computational linguistics approach applied to the text of millions of books



Intro

0000000

Sentiment toward finance



- Persistent differences across languages/countries with ample time-series variation
- Finance sentiment declines after uninsured disasters (epidemics and earthquakes), but rises following insured ones (droughts, floods, and landslides)
- Shocks to finance sentiment have long-lasting effects on economic and financial growth

Related literature

Intro

- ▶ Measurement of public attitude toward the financial sector (Stulz-Williamson 2003; Guiso-Sapienza-Zingales 2008; Gurun-Stoffman-Yonker 2018; D'Acunto-Prokopczuk-Weber 2019; Levine-Lin-Xie 2019)
 - We provide a new sentiment toward finance panel spanning centuries and several large economies
- Culture and its effects on economic outcomes (Guiso-Sapienza-Zingales 2006; Spolaore-Wacziarg 2013; Mokyr 2016; McCloskey 2016)
 - We show natural disasters provide one plausibly exogenous cause for cultural changes
- ► Text used to analyze culture, economics, and finance (Michel et al. 2011; Gentzkow-Kelly-Taddy 2019; Loughran-McDonald 2020)
 - ► Early work is bag-of-words / dictionary-based ⇒ missing context
 - ▶ Kozlowski-Taddy-Evans (2019) show embeddings capture cultural associations better
 - ► We provide a more efficient method using a pretrained model (BERT)
 - ► Transfer learning lowers estimation error and computation costs

Related literature

Intro

- ▶ Measurement of public attitude toward the financial sector (Stulz-Williamson 2003; Guiso-Sapienza-Zingales 2008; Gurun-Stoffman-Yonker 2018; D'Acunto-Prokopczuk-Weber 2019; Levine-Lin-Xie 2019)
 - We provide a new sentiment toward finance panel spanning centuries and several large economies
- Culture and its effects on economic outcomes (Guiso-Sapienza-Zingales 2006; Spolaore-Wacziarg 2013; Mokyr 2016; McCloskey 2016)
 - ▶ We show natural disasters provide one plausibly exogenous cause for cultural changes
- ► Text used to analyze culture, economics, and finance (Michel et al. 2011; Gentzkow-Kelly-Taddy 2019; Loughran-McDonald 2020)
 - ightharpoonup Early work is bag-of-words / dictionary-based \Rightarrow missing context
 - ► Kozlowski-Taddy-Evans (2019) show embeddings capture cultural associations better
 - ► We provide a more efficient method using a pretrained model (BERT)
 - ► Transfer learning lowers estimation error and computation costs

Intro 000000

- Measurement of public attitude toward the financial sector (Stulz-Williamson 2003; Guiso-Sapienza-Zingales 2008; Gurun-Stoffman-Yonker 2018; D'Acunto-Prokopczuk-Weber 2019; Levine-Lin-Xie 2019)
 - We provide a new sentiment toward finance panel spanning centuries and several large economies
- Culture and its effects on economic outcomes (Guiso-Sapienza-Zingales 2006; Spolaore-Wacziarg 2013: Mokyr 2016: McCloskey 2016)
 - We show natural disasters provide one plausibly exogenous cause for cultural changes
- ► Text used to analyze culture, economics, and finance (Michel et al. 2011: Gentzkow-Kelly-Taddy 2019; Loughran-McDonald 2020)
 - Early work is bag-of-words / dictionary-based ⇒ missing context
 - Kozlowski-Taddy-Evans (2019) show embeddings capture cultural associations better
 - ▶ We provide a more efficient method using a pretrained model (BERT)
 - ► Transfer learning lowers estimation error and computation costs

Data

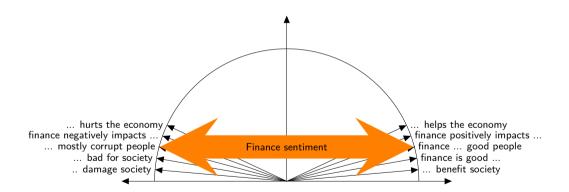
- ► Text from Google Books corpus
 - ► Annual sentence (5-gram) counts 1870–2009
 - ▶ 8 languages: Chinese, German, French, Italian, Russian, Spanish, UK English and US English
 - About 1 billion sentences mentioning "finance
- Natural disasters data
 - ► Emergency Events Database from CRED 1900–2009
- Macro data
 - ▶ Jorda-Schularick-Taylor macro data for advanced economies
 - ▶ Barro-Ursua macro data for Russia and China

Word embeddings

- ▶ We rely on recent language model (BERT, Devlin et al. 2018) to measure if "finance" mentions are on average closer to positive versus negative sentences
- ▶ We use BERT to embed sentences in a low dimensional numerical vector (~800d)
- Neural word embeddings produce richer insights into cultural associations than prior methods
 - ightharpoonup e.g. $\overrightarrow{king} \overrightarrow{man} + \overrightarrow{woman} pprox \overrightarrow{queen}$
- BERT is particularly good at distinguishing context
- Basic idea
 - e.g. "correcting corruption or financial malpractice"
 - ► Closer to "finance damages society" than to "finance benefits society"

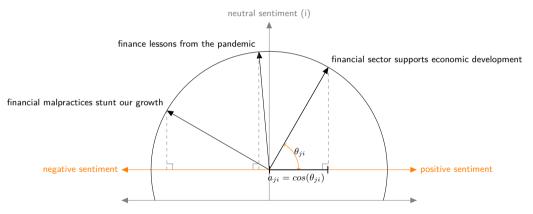
Measuring of finance sentiment

Step 1: Define positive-negative sentiment dimension



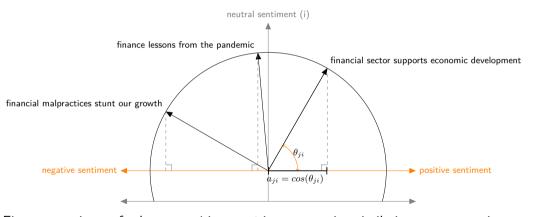
Measuring of finance sentiment

Step 2: Project "finance" mentioning sentence j in language i embeddings on the positivity dimension



Measuring of finance sentiment

Step 2: Project "finance" mentioning sentence i in language i embeddings on the positivity dimension



Finance sentiment for language i in year t is mean cosine similarity across mentions

Positive — negative defining sentences (English)

Intro

Positive sentences	Negative sentences
financial services benefit society	financial services damage society
finance is good for society	finance is bad for society
finance professionals are mostly good people	finance professionals are mostly corrupt people
finance positively impacts our world	finance negatively impacts our world
financial system helps the economy	financial system hurts the economy

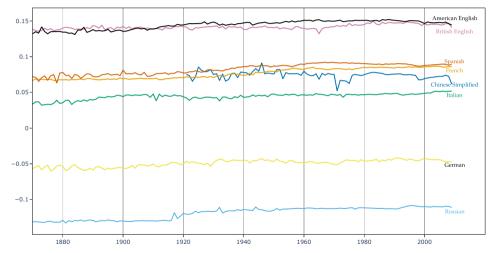
Positive sentiment sentences	Negative sentiment sentences		
financial support of the science	turmoil in the financial markets		
financial management of the school	instability in the financial markets		
financial support of the research	lack of money to finance		
financial management of the business	a financial panic		
financial support of this project	the financial panic		
financial management initiative	financial panic in the united		
financial support of the work	international financial instability		
understanding of the financial system	lack of funds to finance		
finance for small and medium	my finances falling short		
finance graduate school of	the financial deficit		

Repeat for all 8 languages

Sentiment toward finance 1870-2009

Intro

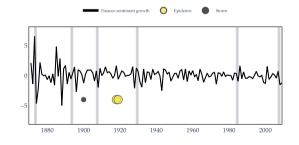
Persistent differences across languages/countries despite ample time-series variation

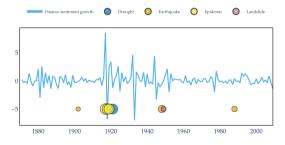


Finance sentiment growth

Focus on percentage growth to detrend

$$\Delta f_{it} = \frac{f_{i,t} - f_{i,t-1}}{|f_{i,t-1}|} \times 100$$





USA

Russia

Common concerns

- 1. Books may not represent average citizen, especially far back in time
 - Yes. But, "literary elite" commands large share of wealth, power, and influence on others' opinions
- 2. Spanish is spoken outside of Spain
 - Requires a modest leap of faith
 - We expect it to introduce more error into our measurement toward the end of our sample
- 3. Language may have changed over time
 - ▶ We do assume the meaning of language stays constant
 - But our estimates come from variation in phrase use over time
 - Manela-Moreira (2017) show English language changes over similar period does not affect much ability of ML to predict volatility

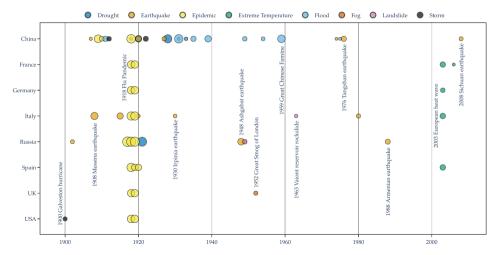
Natural disasters as exogenous shocks

Classify disaster as severe if it kills at least 20 per million population Epidemics, droughts, earthquakes, volcanos are largely uninsured

Disaster Group	Туре	Disasters	Severe	Mean Killed	Damage, \$M	Insured, $\%$
Biological	Epidemic	46	19	378133		
Climatological	Drought	20	3	783922	1830	
	Wildfire	53	0	41	504	37.22
Geophysical	Earthquake	150	18	7534	1744	21.23
	Volcano	5	0	206	431.6	
	Mass movement	8	0	79		
Hydrological	Flood	189	9	38949	859.3	42.97
	Landslide	66	2	321	224.1	
Meteorological	Storm	217	3	951	1132	101.2
	Extreme Temp.	70	5	1068	2233	36.26
	Fog (Smog)	1	1	4000		

Severe natural disasters 1900-2009

Systematic sources of risk may not provide risk sharing opportunities \Rightarrow high insurance premia and low take-up



Intro

Natural disasters affect future finance sentiment

	Finance sentiment growth t_{t+1}							
	(1)	(2)	(3)	(4)	(5)	(6)		
Natural Disaster _t	-0.88** (0.32)	-0.88** (0.33)	2.01** (0.70)	-0.89** (0.33)				
Wart	(0.52)	0.10 (0.40)	(0.70)	0.08 (0.42)				
$Natural\ Disaster_t\ imes\ Low\ Insured_t$		(0.10)	-4.44** (1.70)	(0.12)				
logKilled _t			(1.70)	0.10 (0.09)		0.12 (0.09)		
Droughtt				(0.00)	3.27* (1.39)	3.60*		
Earthquake _t					(1.39) -4.57** (1.88)	(1.55) -4.64** (1.92)		
Epidemic _t					(1.88) -4.13** (1.64)	(1.92) -4.16** (1.69)		
Extremetemp _t					-0.07	-0.05		
Flood _t					(0.35) 2.39** (0.68)	(0.37) 2.42*** (0.68)		
Landslide _t					(0.68) 5.20*** (1.08)	(0.68) 5.41*** (1.26)		
Stormt					-5.87 (4.90)	(1.26) -5.93 (5.19)		
Fog_t					3.31 (2.57)	3.37 (2.50)		
Country FE Year FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
R ² Obs	0.13 851	0.13 851	0.14 851	0.13 851	0.16 851	0.17 851		

Natural disasters effect heterogeneity

- ▶ Finance sentiment declines by 1% one year after a severe natural disaster
- ► Hides ample heterogeneity across disaster types
 - Uninsured disasters (epidemics, earthquakes) reduce it by 4%
 - ▶ Insured disasters (floods, landslides) increase it by 2–5%

Potential explanation #1

Bankers, love them ex-ante, hate them ex-post

- Finance facilitates risk sharing through insurance, securitization or derivatives
- ▶ But financial contracts and intermediaries are often designed to prevent ex-post renegotiation (Diamond-Rajan 2001; Agarwal et al. 2017)
- When insured disasters hit, economic costs are shared broadly, across households and generations

Potential explanation #1

- ▶ But COVID-19 pandemic illustrates uninsured disasters
 - damage can be concentrated in parts of the population (Mongey, Pilossoph, and Weinberg, 2020)
 - destroy fragile businesses (Chetty, Friedman, Hendren, and Stepner, 2020)
 - generate resentment against financial intermediaries

Coronavirus Will Cost Businesses Billions, Insurance May Not Help.

Companies buy insurance that usually pays out when they have to halt operations. But it's usually because of physical damage, not outbreaks.

The correservicus outbrook has closed suppliers in China, but insurance policies meant to protect companies from business interruptions probably won't cover the losses. Ned Cells/Agence France-France Georg images

Then came the coronavirus outbreak.

Source: New York Times

Potential explanation #2

Insurance claim disputes can affect finance sentiment

- Insurance claims are frequently disputed and result in rejections or lower payments (Gennaioli, Porta, Lopez-de-Silanes, and Shleifer, 2020)
- Sentiment toward insurers may worsen if households learn they are uninsured only after disaster strikes

Source: Wall Street Journal

Other explanations?

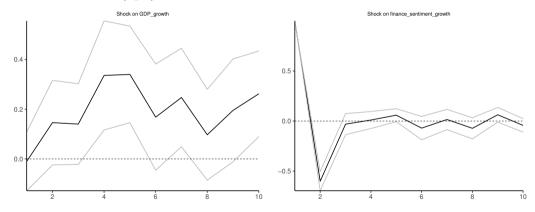
- Getting at the exact mechanism is always tricky
- ▶ Other unobservables besides insurance could be different across disaster types

Does finance sentiment affect economic growth?

- ▶ Before the (old) financial crisis, many economists thought of finance as a "veil"
- If so, does it matter if people perceive the veil as white or red?
- ▶ To answer, we estimate impulse responses for GDP and credit growth using local projections (Jorda 2005)
- What are the long term consequences of a shock to finance sentiment controlling for 5 lags of GDP, credit, and sentiment growth, and for country fixed effects?
 - Causality in VAR sense

Impulse response of economic growth and finance sentiment

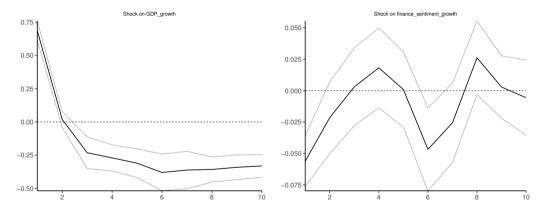
Finance sentiment shock is followed by higher future GDP growth (left) Finance sentiment oscillates (right)



Finance sentiment growth shock

Impulse response of economic growth and finance sentiment to shocks

Positive GDP growth shock reduces contemporaneous finance sentiment

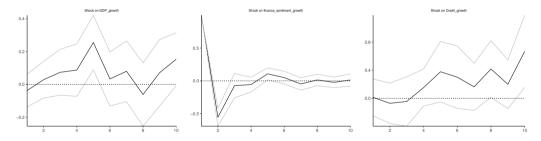


GDP growth shock

Impulse response of economic, credit growth and finance sentiment

Excluding China and Russia

Finance sentiment shock is followed by higher future GDP and Credit growth



Finance sentiment growth shock

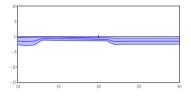
COVID-19 implications

- Beyond the health crisis, COVID-19 may have long-lasting effects on popular sentiment toward finance
- ▶ If like previous severe epidemics, all else equal we expect
 - 4pp decline in finance sentiment growth within a year
 - ▶ 1pp lower GDP growth over next five years
 - 2pp lower credit growth over next five years

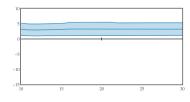
Conclusion

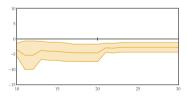
- Books allow us to travel through time and across borders, and to document several new facts about finance sentiment
- ▶ Persistent differences across languages/countries with ample time-series variation
- Finance sentiment declines after uninsured disasters but rises after insured ones
- ► Long-lasting effects on economic and financial growth
- Word embeddings are underutilized in economics and finance but show promise

Effects on finance sentiment growth robustness to severe disaster cutoff



Natural disaster (any)

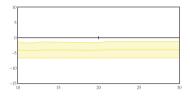




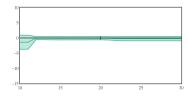
Drought

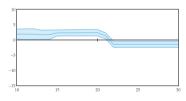
Earthquake

Effects on finance sentiment growth robustness to severe disaster cutoff



Epidemic

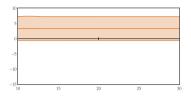




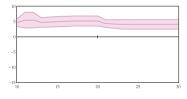
Extreme Temperature

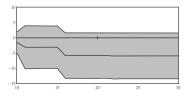
Flood

Effects on finance sentiment growth robustness to severe disaster cutoff



Fog





Landslide

Storm

Comparison with dictionary-based approach

- Dictionary-based approach is more common in economics and finance
 - e.g. Tetlock (2007), Loughran-McDonald (2014), Baker et al. (2016)
- Limitations:
 - Hard to capture context with single words (unigrams)
 - Existing word lists are mostly in English
- Our attempts to adapt it to our purposes failed miserably

Comparison with Kozlowski-Taddy-Evans (2019) approach

- ► Kozlowski-Taddy-Evans (2019) approach
 - ▶ fit a word embedding (word2vec, glove) model to each decade for each language
 - measure cosine similarity once for each phrase of interest
 - variation comes from variation in the language model and in term frequencies
- ► Instead, we
 - use a pretrained BERT language model
 - measure cosine similarity once for each phrase of interest
 - average cosine similarities for each year (and language)
 - variation is only due to term frequencies
- Assumption that language meaning stays the same allows us to measure year over year changes and reduces computation costs considerably